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Abstract 

The calibration functions of amplitude and phase lag of the dynamic heat-flow rate of temperature-modulated DSC are 
investigated by model calculations. The results are experimentally verified for sapphire and polystyrene. The calibration 
functions depend on the sample as well as the heat-transport conditions on the sample holder. At low frequencies, these 
functions are constant. However, for calibration in the entire frequency range, the knowledge of these functions is necessary. 
The frequency dependence of phase lag and amplitude are investigated. The calibration functions are determined by the actual 
heat-transfer parameter. Using the presented model, this parameter can be evaluated from phase-lag information and can be 
used for the amplitude calibration. © 1997 Elsevier Science B.V. 
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1. Introduction signal ~s can be described as a sum of an underlying 
component ~u and a periodic component ~p. [1,2]. 

The temperature-modulated DSC (TM-DSC) is an 
~s = ~u + ~p (2) 

extension of the conventional DSC. At this measuring 

mode, the conventional temperature program (isother- The underlying component is equivalent to the con- 
mal and linear scan) is superimposed with a periodic ventional DSC curve. The periodic component is 
change. 

oo 

~s(t ,  T) = ~a(O30, T) Z anCOS (rto30t - fin) 
T(t)  = T O q-/30 f q- T a Z ansin (/'t&°t) (1) n=l 

n = l  O~ 

where To is the initial temperature, /30 the constant = woTa]C(~o, T)] Z ancos (nwot-~n) 
underlying scanning rate, Ta the temperature ampli- n=l 

oo 

tude of the periodic component, wo = 27rf = 27r/tp = ~0Ta Zan(C(nwo, T)cosmoot 
0 e is the frequency of the periodic component and tp i=t 

the period) and an a set of parameters (Fourier coeffi- + C"(n~0, T)sin n~Cot) (3) 
cients), which describes the shape of the periodic 
signal. In the linear case, it was shown that the sample where ~ is the phase lag between the heat-flow rate 

and the temperature change and ~a the amplitude of 
*Corresponding author. Fax: 0049731 5023112. the heat-flow rate. C' is the real part and C" the 
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imaginary part of the complex heat capacity 
08 

C(a;) = C'(a)) - iC"(w) (4) / ~  

The modulus of the heat capacity is o.6 
% 
I~ 014 

IC( )l = + (5) o 

The influence of heat transfer on the measured o.2- 
signal (smearing) was considered but not discussed 
in an earlier paper ([2]). We want to discuss these 0 0 -  
effects in detail here. ~ I I I I 

10 20 30 40 50 
Time in s 

2. The influence of the DSC on the measured Fig. 1. Green's function of a Perkin-Elmer DSC-2 containing a 
c u r v e s  18.41 mg polystyrene sample. 

A DSC can be described as a linear system within 
the limits of accuracy of the measurements. The the period tp should be close to the maximum time 
connection between the sample signal Os and the in G. 
measured signal Om is given by the convolution For the following investigations only the second 
product term of Eq. (7) is of interest. This term is equivalent to 

t the measured curve at quasi-isothermal conditions. 
For a better understanding, the following calculations 

Ore(t) = G( t - t ' )Os( t ' )d t '  (6) are based on a sinusoidal, periodic temperature 

0 change. The result can be generalized to any signal 

The Green's function (or impulse response function) form by using Eq. (1). 

G describes the influence of the measuring device on T(t) = To + Tasin (wot) (8) 
the measured curve. Substituting Eq. (2) in Eq. (6) 
yields In this case, the sample signal Os is identical to Op in 

t Eq. (2). The measured signal reads 

Om(t,T) = J G ( t -  tl)~u(tl~ T)dt t t 

f 
~m(t) = ] ~s(t - t')G(t')dt (9) 0 

t 0 
, /  

f + 
/ G(t - t')Op(t I, T)dt ~ (7) It is useful to solve this equation by Fourier transfor- 
0 mation 

The first term in this equation is equivalent to the 
srfleared signal of a conventional DSC. The influence ~'(Om(t)) ~ ~m(W) = f o  Om(/)exp ( - iwt )dw 
of G on the measured signal is discussed in Refs. [3,4]. ~ - 1 (  t~m (~))  ~ t~m (t) = ~ f o  t~m (~)exp (iwt)dt 
A typical Green's function for a DSC (Perkin-Elmer (10) 
DSC 2 and 18.41 mg polystyrene) is shown in Fig. 1. 
The maximum of G is at ~10 s. After 30 s this because the convolution product transforms to a con- 

function disappears. Because w corresponds to the ventional product 

period tp, an influence of the DSC on the measured t~m(03 ) = ~bp(~v)G(~) (11) 
curve is expected at periods lower then 30 s. At 
periods lower then 10 s, a strong smearing of the The Green's function G(t) is a real function and the 
measured curve is expected. The lower limit of Fourier transform G(~) is  complex 
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~mple  ~ '~s G(~o) = C ( w )  + iG"(~o) ( 1 2 )  .o~ c~,~,~ ~ / I [unlr,o~) ~ / 

e p ( ~ )  = ~0Ta(C 'Tr6(~  - ~0)  - iC"Tr~(w - ~o))  moo~) 

(13) c~n'~ c " ~  ~ ~  

where 6(x) is the Dirac function. Finally, ~m(O.))  c a n  be ÷ 
written as ~n~of - - - - - - - - - - -  *~ 

~m(O3) = woTa( (C'G'  + C"G't)Tr6(w - ~o) ' ~ "  . . . . . . . . . .  
- i ( C " G '  - C 'G")Tr6(w - wo))  (14)  Fig. 2. Model of one DSC furnace with sample. The sample is 

approximated to be an infinitely thin foil. The heat-flow rate into 

We obtain, for the measured signal, by inverse Fourier the sample is ~ The Green's function G describe the heat transfer 
transformation of Eq. (14) from the heater to the sample. The whole system is adiabatically 

isolated. 

~m (t) = ~0Ta (G t (Ctcos aJ0t + C"sin ~0t) 

+ G"(C"cos ~0t)) transfer coefficient 

- ~oTalCIIGIcos (~ot - ~ - ~g) (15) L C k = ~ f + kt (16) 
A comparison of the measured signal ~m(t) (Eq. (15)) 
and the unsmeared sample signal ~b~(t) (Eq. (3)) where )~ is the beat conductivity of the furnace 
shows, that the heat transfer influences the amplitude material and kt describes the heat conductivity of 
for a factor IGI and results in an additional phase lag the sample and the heat contact; kt depends on 
~g. Both quantities depend on the measuring fre- the heat capacity of the sample. This is a simple 
quency. To calculate the sample parameters (i.e. the model of the sample holder of a power compensated 
complex heat capacity (C(~o)), it is necessary to DSC. 
determine this calibration functions. If the temperature change measured in location of 

Calculations of special heat-transfer models of the the sensor is sinusoidal, then the heat-flow rate into the 
calorimeter yield similar results [5,6]. sample ~0(t) reads 

• 0(t) --- ~aCOS ~0t (17) 

3. Model calculations for the calibration functions where the amplitude is 

A result of the previous paragraph is that the DSC ~ a ( t )  = CscooTa(L) (18)  

influences the amplitude and phase lag of the mea- (Cs is the heat capacity of the sample and Ta(L) the 
sured signal. To obtain quantitative values and to find temperature amplitude on the top of the heat con- 
out their frequency dependences, model calculations ductor.) 
are helpful. A simple model of the DSC sample holder The heat-transfer coefficient k contains the heat- 
is used (Fig. 2), with two identical furnaces. The transfer conditions of the sample. Therefore, ~s is the 
temperature of the sensor is controlled. The samples heat-flow rate into the sample after correction of the 
should be infinitely thin. The real heat-flow rate into heat transfer influence (desmearing) and consequently 
the sample is ~s. The heat-flow rate qo m is measured at ~s is in phase with the temperature change on the place 
the sensor location. The whole heat-transfer path into 1 = L. The solution of the field equation 
the furnaces, the heat contact and the heat transfer into 02T(z ,  t) k OT(z, T) 
the sample, is approached as one-dimensional heat - (19) 
conductor with the length L, the cross section Ac and OZ 2 L 2 Ot 
the heat capacity Cf.. The sensor is located at I = 0 (on yields the measured signal of the sensor. A useful 
the bottom) and the sample at l =-- L (on the top). The method to obtain a solution of this linear partial 
whole heat transfer path is described by the heat- differential equation is by means of the Laplace 
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transformation Substitution of Eq. (17) into Eq. (9) yields 

o o  71" o o  

T ( s ) =  f T(t)e-Stdt (20) ~m(t) = ~a~ n~o(-1)n(2n ÷ =  1) 

o 

where s is a complex value s = a + i~. × ~ (xncos (wot) X n ÷ ~30 
In analogy to the calculations in [7], we obtain the 

3 
temperature profile + w0sin ( w o t ) ) ~ e  x°t] (26) 

Xn J _( r ( s ,  z) = To r ( s ,  O) - 
s cosh ~ If the exponential term vanishes one gets the steady 

state measured heat-flow rate: 
_ Lsinh v/-~ks~s(S ) ~  (21) o~ 

71" ( Z ( - -  1)n(2n 1) XAcx/~c°sh ~m(t) = <~a~ COS (O30t) ÷ 
where To is the initial temperature and T(s, O) the .=o 
temperature at the location of the sensor, xn 

The measured signal ~m is obtained by means of the × x2 +--~ + wosin (~v0t) Z ( -  1 )" 
Fourier law n=o 

1 ) = 4 4  
~m(S) ~ ~(Z : 0, S ) :  -,~Ac oT(z:O'S) × (2n÷  1) , _ o  ak 

Oz 
(22) × {cos (~ot) V ' (  ~ ° ¢  (2n + 1) 3 

Z ~ ' - l ' n  (2n + 1) 4 ÷ C~ 2 
This results in: \ .=o 

/ t~m(S ) = -- Z(s, 0 ) - - -  v/-~s--~tanhv~s +asin(w0t)  n=Zg(--l)n(2n÷ 1)4÷O~ 2 

1 v/-k- ~ ~s (s) (23) = 4in (A cos ~0t + B sin ~0t) 
+ cosh = Ka~aCOS (wot - qOg) (27) 

The first term in Eq. (23) does not depend on the where 
sample. It describes the furnace. If the sample holders 
are symmetric, this term can be neglected. In this case 4~;0k a -- (28) 
the measured signal reads: 7r 2 

4 °° (2n + 1) 3 
~m(S) ---- c o s h l v ~ S  = G(s)~s(s) (24) a ---- ~ E ( - 1 ) n =  (2n + 1) 4 + c~ 2 (29) 

This relationship is a convolution product and G(s) and 

o~ 2 n + l  is the transforming Green's function. The back-trans- 4 Z ( _ I ) ~  (2n + 1 + c~ 2 
formation of Eq. (24) yields the convolution integral B = c~- )4 (30) 
Eq. (9). The Green's function G(t) is: 7r ,=0 

kn~_ ° The functions a and B depend on the measuring 
G(t) = ( - 1 ) " ( 2 n +  1)e -x"t (25) frequency and the heat-transfer coefficient k. The 

sample as well as the heat contact between sample 
where and furnace influence k. 

The calibration factor of the amplitude Ka is: 
(2n + 1)27r 2 

x, -- 4k Ka = V / ~  + B 2 (31) 
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,o in s" increase in the phase lag. At higher frequencies, the 
0 1  0 2  0 3  0.4 0 5  0 6  0 7  

, , , , , , influence of the heat-transfer coefficient rises. 

~" If the heat capacity Cp is known, and the sample has 
06 ~ ~ ~ s  no thermal events, the calibration factor Kacan be 
05 ~ ~ ~  calculated from the measured amplitude of the 
o4 ~ ~ s dynamic component (~am. 

03 ~ ~am (~0, 7") 
g=9.86 s Ka(~0) ~OTa(wo)Cp(T) (33) 

Fig. 3. The calculated calibration factor for the amplitude as a 
function of the frequency at different heat transfer coefficients. In this case the measured phase lag is identical with 

the phase calibration function ~g. 
The measuring device is a Perkin-Elmer DSC-7 in 

The heat transfer yields the phase lag g~g: the DDSC mode. The average measuring temperature 
B is 40°C. The program temperature amplitude is 1 K, 

~g = arctan ~ (32) unless otherwise stated. The heat-flow rate and the 
temperature are measured at varying frequencies in 

The calibration functions of the heat-flow amplitude the (2-200) mHz range. The temperature amplitude 
Ka(k, ~) and phase lag Cpg(k, ~) are functions of the and the amplitude of the heat-flow rate, as well as the 
frequency. Ka corresponds to ICI in Eq. (15). In case of phase lags are measured. The calibration function ~g 
the heat flux DSC, the frequency dependence of Ka is is obtained by subtracting ~ from the measured phase 
already investigated experimentally [8]. In Fig. 3, the lag qOm. ~;~ is determined from the behaviour of a real 
theoretical functions of Ka from Eq. (32) are shown. DSC sample holder (in contrast to the ideal symmetric 
From these functions, one gets the typical behaviour of sample holder describes by Eq. (24)). The calibration 
the amplitude. On increasing the frequency, the ampli- function of the heat-flow amplitude Ka is calculated by 
tude decreases. This effect depends on the heat-trans- Eq. (33). 
fer coefficient. The better the heat transfer from the In order to determine the calibration function 
heater into the sample, the smaller is the influence on ~ ( ~ ) ,  the measured amplitude calibration function 
the amplitude. In Fig. 4, the related dependences in Ka(~) is fitted using Eq. (31). The result is the fit 
case of the phase lag are shown. Increasing k yields an parameter k. The phase shift ~g calculated from 

Eq. (32) is smaller than the measured phase shift 
~m. The difference between ~m (w) and qOg (w) is the 

,5o instrument specific function ~p~. 
12~ ~ ~ s  The calibration functions are measured for different 

1 6 o  J ./~-4.93k=-4.93 s samples (sapphire samples of varying mass and thick- 
J ~ ness). The results are shown in Figs. 5 and 6. The 

7- °75 ~ samples differ in thickness and mass, so that the heat- 
¢ transfer coefficient k varies. The experimental results 

0 SO - -  . S 

correspond very well with the theoretical curves. This 
0 2 5  k=1.23 s simple heat-transfer model is useful to describe the 

signal behaviour in this calorimeter in a wide fre- 
o11 o12 6!3 o!4 6!5 oI~ oi, quency range. If ~o is less than 0.12 s- t (period larger 

o, in s' as 50 s) the calibration functions do not depend on the 
Fig. 4. The calculated phase lag as a function of the frequency at measuring conditions. Similar results are shown by 
different heat-transfer coefficients, comparison of sapphire and polystyrene (Figs. 7 and 
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0,6 ~ k = 1 . 9 7 s  : 2  o 

0.5i ~ a 0.4" o n 
0.4 o m=7.898mg; d=0.260 k=3.67s a Sapphire 

o m=27.338mg; d=O.250mm o ~  
03 zx m=28.740mg;d=0.775mm zx k=4.26s 0.2 • o Polyslyrene 

I [ ]  0'2.0 012 01.4 01,6 01.8 11.0 1,2 114 0 
0.0 • , • , . , , , , , 

to in s" 0,0 0.2 0,4 0.6 0.8 1.0 1.2 1.4 

Fig. 5. The calibration factor for the heat-flow amplitude measured a~ in s ~ 

on sapphire samples of varying thickness and mass as a function of Fig. 7. The calibration factor of the heat flow amplitude of 
frequency. The black curves are theoretical curves (Eq. (31)) sapphire (27.338 mg) and polystyrene (18.342 mg). 

5- 

t~ m=7,898mg; d=0,260mm k=4.28s 6- 
o m=27,338mg; d=O.250mm . 

4- zx rn=28.740rng; d=O.775mm ~ ' ~ o ~  k-=3.67s " o 

"~ - +~ ~ 1.97s o 
3 -  • 

.c_ + ~ 4- o 

.-- ~ 3" 0 
.+ .- o 

I 2" 

I. ~ o Sapphire 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 o PoiysIyrene 

e.,ins' 0 n°. , . . . .  
0.0 0'2 04 06 018 1'0 1'2 1'4 

Fig. 6. The phase lag measured on sapphire samples of varying 
~0 ir~ s ~ 

thickness and mass as a function of frequency. The black curves are 
theoretical curves (Eq. (32) and ~rn = ~g + ~ ,  where ~/~ is the Fig. 8. The measured phase lag of sapphire (27.338 mg) and 
phase lag as determined by the behaviour of a real sample holder.), polystyrene (18.342 mg). 

8). Especially in the high-frequency range (period less (Figs. 11 and 12.) show a good agreement with that 
as 40 s), the heat-transfer conditions influence the of prediction. For higher frequencies (w > 0.8 s- l) ,  
calibration functions. In this region, the calibration the experimental errors increase and we obtain devia- 
should be carried out using substances with similar tions between model calculations and experimental 
heat-transfer conditions as in the sample (e.g. polymer results. 
sample calibrated with polystyrene). The dependence 
of the calibration functions on the period tp is shown in 
Figs. 9 and 10. 5. Conclusion 

The model calculations show, that the calibration 
functions do not depend on the temperature amplitude The measured signal of TM-DSC measurements are 
(Eqs. (31) and (32)). For verification, the temperature influenced by heat-transfer conditions. The heat trans- 
amplitude is varied between 0.1 and 1 K. The sample fer into the DSC furnace, the heat transfer into the 
is 8.652 mg polystyrene. The experimental results sample, and sample properties such as heat conduc- 
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Fig. 9. The calibration factor of the heat-flow amplitude as a Fig. 11. The dependence of the heat-flow amplitude calibration 
function of the period measured on sapphire (7.898 mg). function on the temperature amplitude (sample: 8.652 mg poly- 

styrene). 
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Fig. 10. The phase lag as a function of the period measured on ~ in s ~ 

sapphire (7.898 mg). Fig. 12. The dependence of the measured phase-lag function on the 
temperature amplitude (sample: 8.652 mg polystyrene). 

tivity and geometry affect the measured signal. It is considered in the calibration procedure. In addition, 
advantageous to use relatively thin samples, the heat contact between sample and pan should be 

The measured signal is smeared by heat transfer, good and relatively constant [9]. 
This smearing is the reason of the decrease in the heat- The calibration function of the amplitude depends 
flow amplitude and the increase in the phase lag on the frequency, the heat contact ofthe sample as well 
between heat-flow rate and temperature change. With- as on the geometry. In principle, it is possible to 
out thermal event, the measured phase lag is the calibrate the amplitude within a large frequency range. 
calibration function ~g. These values can be used to In the low frequency range, this function is constant. 
calculate the phase lag of the sample in case of  a The accuracy of heat capacity measurements at such 
thermal event. HoweverduringarealTM-DSCexperi-  conditions is better, and the calibration is nearly 
ment, the heat capacity of  the sample and the thermal independent of  the measurement conditions. 
contact can change. This influences the heat-transfer In the entire frequency range, the measured TM- 
coefficient k. The change of the heat capacity can be DSC-signal can be described by the linear theory of 
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